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ABSTRACT

The Carderock Division, Naval Surface Warfare Center undertook to
experimentally determine the effects of above water bow shape on vertical
flare slam and deck wetness loadings. A modern naval combatant was
selected as the parent hull form and six variations in the above water
bow shape were investigated. It is shown that significant variations in the
flare slam forces occur with changing bow shape while deck wetness forces
remain relatively constant.

ADMINISTRATIVE INFORMATION

This work was conducted at the Carderock Division, Naval Surface Warfare Cen-
ter (CARDEROCKDIV, NSWC) in support of the Independent Exploratory Devel-
opment Program of the CARDEROCKDIV, NSWC and the General Hydromechanics
Research Program sponsored by the Naval Sea Systems Command and administered
by the CARDEROCKDIV, NSWC.

INTRODUCTION

In general, Naval combatant hulls of the World War II era had relative fine bow
form with little flat bottom and almost no bow flare. Bottom slam impact forces were
small but deck wetness was severe. Current ship designs include substantial amounts
of bow flare in an effort to increase usable deck area with a minimum of wetness. As a
result, local bow flare impacts are a source of concern.

This experimental investigation was carried out during 1981 and 1982 to establish
a useful data base as to the effects of above water bow shape on motions and loadings
due to flare slamming impact and deck wetness.

A parent hull form was selected for this study which was representative of a modern
combatant. A set of six above water bow variations were then designed to produce what
was considered a range of realistic variations in bow shape. Some of the deck wetness
results have been previously published 1 . The present report presents the results of the
experimental program.

MODEL PARTICULARS

Particulars for the model used in this investigation are given in Table 1, with the
parent body plan shown in Figure 1. The six above water variations in bow shape are
compared to the parent in Figures 2 through 4. The 4.5 meter model was constructed
of Fiberglas at the CARDEROCKDIV, NSWC and designated Model 5405. The model
was designed for use with the CARDEROCKDIV, NSWC pogo stick seakeeping tow-

ing and motion measuring device and therefore was not equipped with propulsion or

rudders.



The model was constructed such that the above water portion forward of Station 10
was removable. The parent as well as the six bow shape variations were constructed for
installation on the basic model. These above water portions were constructed in two
sections. The portion from Station 10 to Station 2.5 was rigidly attached directly to
the hull with its primary function to provide a smooth transition for each bow variant
to the parent hull form. The portion from Station 2.5 forward was attached to the
main hull by a system of three block gages such that any vertical forces acting upon
the above water bow section could be measured. The particulars of these above water
bow sections (Station 2.5 forward) are presented in Table 1.

INSTRUMENTATION

This experimental investigation into the effects of above water bow shape on flare
slamming and deck wetness was carried out in the Maneuvering and Seakeeping Facility
(MASK) at the CARDEROCKDIV, NSWC. Throughout the experiments the model
was attached to the CARDEROCKDIV, NSWC's seakeeping model towing pogo stick.
This allowed the model to be towed by the MASK carriage with freedom to move in
pitch, heave and roll while being restrained in surge, sway and yaw.

The pogo stick is equipped to measure pitch, heave and roll motions by poten-
tiometers. The vertical forces acting on the bow section were measured using variable
reluctance block gages mounted in a triangular array. A vertical accelerometer (Acceler-
ation 1) was installed within the bow section to aid in determining the inertial effects of
the bow section on the measured vertical forces. A second accelerometer (Acceleration
2) was installed at Station 4 as a backup to Acceleration 1 in the bow section.

The near hull relative motion around the bow section was measured by variable
resistance wire probes. These were installed around the bow sections by means of a
cantilever support such that no interference would be made to the force measurements,
i.e., no contact with the bow section. The arrangement allowed the range of the relative
motion measurement of the wire probes to extend from a few inches below the keel to
a few inches above the deck level and helped avoid dropout during bow emersion and
immersion. The first of the resistance probes (WP1) was installed directly forward of
the stem. They were also installed at the forward perpendicular on the port (WP2)
and starboard (WP3) side, at Station 1 on the port (WP4) and starboard (WP5) side
and at Station 2 on the port (WP6) and starboard (WP7) side. The water on the deck
of each bow section was also measured by variable resistance wire probes. These were
arranged in an array of five probes placed vertically on the bow deck section. The first
of these was placed on the centerline at Station 0, the next three were at Station 1 with
one on the centerline, one 3 inches to port and the other 3 inches to starboard, and
the fifth one was installed on the centerline at Station 2. These probes provided the
depth of the water on the deck during wetness. More detailed information including
drawings showing the set up for these bow section measurements and their use in a
pilot experiment to determine their feasibility has been previously presented by Bales2.
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MEASUREMENT UNCERTAINTY

Three individual error sources must be considered in the determination of the mea-
surement uncertainty intervals associated with the type data presented herein. These
three error sources occur in calibration, data acquisition and data reduction. These
measurement errors have two parts; the fixed error or bias and the random error or
precision.

During the calibration process, the bias is derived from the accuracy of the calibra-
tion standard used for reference. For the data presented here, two types of mechanical
reference were utilized. The angular measurements and the accelerations were cali-
brated on a mechanical tilt table estimated to be accurate to within 0.050 degrees and
the linear displacement measurement was calibrated on a movable staff estimated to
be accurate to within 0.0254 centimeters. The precision index for the calibration was
derived by linear regression of the calibration values about the calibration factor used
in converting the measurement voltage to physical units.

In the data acquisition process, the primary error sources are bias and occur in the
instruments themselves and the analog to digital converter (A/D) used in collecting
the data. The instrument errors are those stated by the manufacturer or estimated for
those made in house. The A/D is considered accurate to within 0.00488 volts, which
when operated on by the calibration factor, provides its bias for each channel.

The precision of the computer used in reducing the data, provides negligible error
sources in the data reduction process.

The individual bias and precision error sources can be root sum squared to provide
an overall bias and precision error for each measurement. From this measurement
uncertainty confidence intervals of 99% and 95% can be determined.

EXPERIMENTAL PROCEDURE

The flare slamming experimental program consisted of runs in long-crested regular
waves for two headings and three Froude numbers for each of the seven bows investi-
gated. Each of the bows was examined in head (1800) and bow (210') regular waves at
Froude numbers (F,) of 0.15, 0.30 and 0.40. It was originally intended that a Froude
number of 0.45 be run, however this prcved to be unreasonable for the pogo stick tow-
ing gear and was therefore reduced to 0.40. A range of long-crested regular waves of
wavelength to ship length ratios from 0.8 to 3.0 were investigated with a nominal wave
steepness (h/A) of 1/30 for the speeds and headings indicated. Linearity studies were
carried out at motion resonar,.e for all the bows particularly at a Froude number of
0.30 in head waves.

DATA ANALYSIS

Throughout the experiments the model responses were recorded in analog form on
magnetic tape as well as being digitized and recorded by the on-carriage computer.
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Preliminary analysis of the data was done during the experiments to monitor the re-
sults. The responses were also monitored visually on strip chart recorders during the
experiment.

The recorded impact data was analyzed after testing. The analog tapes were com-
puter digitized at a very high sample rate (125 samples/second) generating digital tapes
for analysis. The raw data was resolved into the vertical force components due to flare
slamming and deck wetness. To do this the vertical forces measured by each of the force
block gages were combined by summing in the time domain to produce the resultant
vertical force time history. The inertial force of each bow was determined by multi-
plying the mass of each bow times the vertical acceleration of the bow. This inertial
force was then subtracted from the total force to determine the hydrodynamic loading
on the bow sections. The force due to deck wetness was determined by averaging the
depth of water on the deck measured by the five deck wetness probes and multiplying
by the specific weight of the water and the deck area. This deck wetness force was
then subtracted from the hydrodynamic force to determine the flare slamming force.
An example of the time histories as they are broken down in the above description is
presented in Figure 5.

The regular wave motion results were harmonic analyzed to produce the pitch, heave,
acceleration and relative motion transfer functions presented herein.

RESULTS AND DISCUSSION

The results of this above water bow shape investigation are presented in Figures 6
through 23. The nondimensional transfer functions comparing the motions of each
model bow configuration investigated are presented in Figures 6 through 12 for the
three Froude numbers (0.15, 0.30 and 0.40) in head and bow long-crested regular waves.
The pitch, heave and acceleration results presented in Figures 6 through 8 indicate
the consistency of these results throughout the program. The variation in some of the
relative motion results with bow configuration as presented in Figures 9 through 12 give
an indication of the effect of changes in bow shape on the near hull relative motion.

The flare slam and deck wetness force results are presented in Figures 13 through 23.
The curves presented in these figures were derived by hand faring lines through the
experimental data for each bow. The flare slam forces presented are those impact
forces acting on the bow section in a vertically up direction while the deck wetness
forces are those acting vertically downward. These impact loadings are presented in
Figures 13 through 19 versus wavelength to ship length ratio for Froude numbers of
0.15, 0.30 and 0.40 at headings of 1800 and 210' for the parent bow and the six bow
shane variations. Here the peak forces are normalized by the wave amplitude to help
eliminate inconsistencies due to small wave height variations. The scatter remaining in
the results is an indication of the nonlinear nature of the forces with wave amplitude.

The major vertical loading on the bow sections is due to flare impact forces. Bow
i, the Reduced Flare bow, is the only bow in which the deck wetness force approaches

4



the flare impact force. The increase in flare slamming and deck wetness forces with
increasing Froude number can also be seen in Figures 13 through 19 as well as a slight
reduction in going from head to bow waves. Presented in Figures 20 through 23 are
the flare slam and deck wetness forces versus wave height for a Froude number of 0.30
and wavelength to ship length ratio of 1.2. These results indicate that changes in bow
shape thought to reduce deck wetness result ii- significant increases in flare slamming
loads while the deck wetness loads remain relatively constant. It should be noted that
changes in deck area affect the depth of water on deck necessary to maintain constant
loadings for the increased and decreased flare cases, i.e., the greater deck area of the
increased flare requires less depth of water on deck for a given loading than does the
lesser area of the decreased flare. The effectiveness of the knuckle variants in reducing
wetness in less severe conditions may be decreased as they become submerged during
the more severe conditions of this investigation. Effects of bow shapes on the amount
of spray over the deck in less severe conditions is not investigated here.

CONCLUSIONS

The results presented herein give a comprehensive comparison of the vertical slam-
ming loads acting on the variations of the above water bow sections investigated. Sig-
nificant differences in the flare slam loads can be seen with changes in the bow shape
while the deck wetness loads seem relatively unaffected.
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Figure 1 - Parent Full Body Plan
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DECREASED FLARE

BOW 2
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Figure 2 - Above Water Variations for Bows 1 and 2 Compared to the Parent
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BOW 3
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Figure 3 - Above Water Variations for Bows 3 and 4Compared to the Parent
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Figure 4 - Above Water Variations for Bows 5 and 6 Compared to the Parent
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Figure 21 - Peak Flare Slam and Deck Wetness Forces Acting on Bow 1 and Bow 2
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Table 1 - Flare Slamming Model Particulars

Displacement (fresh water) - kilograms,pounds 165 364.4

Length Between Perpendiculars - meters,feet 4.50 14.76

Beam - centimeters,inches 49.6 19.54

Draft - centimetersinches 16.3 6.427

Tranverse Metacentric Height - centimeters,inches 4.70 1.85

Vertical Center of Gravity above Keel - centimeters,inches 20.3 8.01

Longitudinal Center of Gravity, aft of midships - centimeters,inches 2.50 0.986

Longitudinal Radius of Gyration 0.28Lpp

Block Coefficient 0.463

Midship Area Coefficient 0.750

Bow Variant Particulars

Bow Model Number Name Weight Area
square square

kilograms pounds centimeters inches

Parent 5405 Parent 9.2 20.2 1955 303

Bow 1 5405-1 Decreased Flare 7.3 16.2 1370 213

Bow 2 5405-2 Increased Flare 9.0 20.0 2684 416

Bow 3 5405-3 Reflexive Sheer 8.4 18.5 2201 341

Bow 4 5405-4 Reduced Overhang 7.1 15.7 1879 291

Bow 5 5405-5 Shallow Knuckle 8.1 17.9 1955 303

Bow 6 5405-6 Deep Knuckle 8.6 19.0 1955 303
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